920 research outputs found

    Electronic structure of an electron on the gyroid surface, a helical labyrinth

    Full text link
    Previously reported formulation for electrons on curved periodic surfaces is used to analyze the band structure of an electron bound on the gyroid surface (the only triply-periodic minimal surface that has screw axes). We find that an effect of the helical structure appears as the bands multiply sticking together on the Brillouin zone boundaries. We elaborate how the band sticking is lifted when the helical and inversion symmetries of the structure are degraded. We find from this that the symmetries give rise to prominent peaks in the density of states.Comment: RevTeX, 4 pages, 6 figure

    Identification of Electron Donor States in N-doped Carbon Nanotubes

    Full text link
    Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and characterized by Scanning Tunneling Spectroscopy and transmission electron microscopy. The doped nanotubes are all metallic and exhibit strong electron donor states near the Fermi level. Using tight-binding and ab initio calculations, we observe that pyridine-like N structures are responsible for the metallic behavior and the prominent features near the Fermi level. These electron rich structures are the first example of n-type nanotubes, which could pave the way to real molecular hetero-junction devices.Comment: 5 pages, 4 figures, revtex, submitted to PR

    The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids.

    Get PDF
    Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures

    Electronic structure of periodic curved surfaces -- continuous surface versus graphitic sponge

    Full text link
    We investigate the band structure of electrons bound on periodic curved surfaces. We have formulated Schr\"{o}dinger's equation with the Weierstrass representation when the surface is minimal, which is numerically solved. Bands and the Bloch wavefunctions are basically determined by the way in which the ``pipes'' are connected into a network, where the Bonnet(conformal)-transformed surfaces have related electronic strucutres. We then examine, as a realisation of periodic surfaces, the tight-binding model for atomic networks (``sponges''), where the low-energy spectrum coincides with those for continuous curved surfaces.Comment: 4 page

    Electronic properties of curved graphene sheets

    Full text link
    A model is proposed to study the electronic structure of slightly curved graphene sheets with an arbitrary number of pentagon-heptagon pairs and Stone-Wales defects based on a cosmological analogy. The disorder induced by curvature produces characteristic patterns in the local density of states that can be observed in scanning tunnel and transmission electron microscopy.Comment: Corrected versio

    Strain Modulated Superlattices in Graphene

    Full text link
    Strain engineering of graphene takes advantage of one of the most dramatic responses of Dirac electrons enabling their manipulation via strain-induced pseudo-magnetic fields. Numerous theoretically proposed devices, such as resonant cavities and valley filters, as well as novel phenomena, such as snake states, could potentially be enabled via this effect. These proposals, however, require strong, spatially oscillating magnetic fields while to date only the generation and effects of pseudo-gauge fields which vary at a length scale much larger than the magnetic length have been reported. Here we create a periodic pseudo-gauge field profile using periodic strain that varies at the length scale comparable to the magnetic length and study its effects on Dirac electrons. A periodic strain profile is achieved by pulling on graphene with extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap pulled taut at its edges. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain results in a new quantization different from the familiar Landau quantization observed in previous studies. We also find that graphene ripples are characterized by large variations in carbon-carbon bond length, directly impacting the electronic coupling between atoms, which within a single ripple can be as different as in two different materials. The result is a single graphene sheet that effectively acts as an electronic superlattice. Our results thus also establish a novel approach to synthesize an effective 2D lateral heterostructure - by periodic modulation of lattice strain.Comment: 18 pages, 5 figures and supplementary informatio

    Quantum Particles Constrained on Cylindrical Surfaces with Non-constant Diameter

    Full text link
    We present a theoretical formulation of the one-electron problem constrained on the surface of a cylindrical tubule with varying diameter. Because of the cylindrical symmetry, we may reduce the problem to a one-dimensional equation for each angular momentum quantum number mm along the cylindrical axis. The geometrical properties of the surface determine the electronic structures through the geometry dependent term in the equation. Magnetic fields parallel to the axis can readily be incorporated. Our formulation is applied to simple examples such as the catenoid and the sinusoidal tubules. The existence of bound states as well as the band structures, which are induced geometrically, for these surfaces are shown. To show that the electronic structures can be altered significantly by applying a magnetic field, Aharonov-Bohm effects in these examples are demonstrated.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Formation of off-centered double-walled carbon nanotubes exhibiting wide interlayer spacing from bi-cables

    Get PDF
    ArticleChemical Physics Letters. 432(1-3):240-244 (2006)journal articl

    Defect Engineering: Graphene Gets Designer Defects

    Full text link
    An extended one-dimensional defect that has the potential to act as a conducting wire has been embedded in another perfect graphene sheet.Comment: 2 pages, 1 figur
    corecore